Deformation behavior of high strength metastable hypereutectic Ti-Fe-Co alloys

Dmitri V. Louzguine-Luzgin, Larissa V. Louzguina-Luzgina, Akihisa Inoue

研究成果: Article査読

25 被引用数 (Scopus)

抄録

The high strength metastable Ti-Fe-Co alloys were produced by arc-melting in the shape of nearly semi-spherical ingots. The structure of the hypereutectic Ti-Fe-Co alloys (with equiatomic Fe and Co contents) is found to consist of the primary dendrites of an ordered cP2 Ti(Fe,Co) compound and an eutectic consisting of the cP2 Ti(Fe,Co) compound and a disordered BCC cI2 β-Ti solid solution. Hypereutectic Ti-Fe-Co alloys exhibit a high mechanical strength exceeding 2000 MPa and a plastic deformation of 16%. The deformation behavior and the fractography of Ti-Fe-Co alloys are studied in detail. The β-Ti solid solution phase exhibits a dislocation-type deformation mechanism, while no dislocations but only shear bands were found in the cP2 IM Ti(Fe,Co) phase. This phase deforms by localized shear deformation and also undergoes accommodation deformation likely by intergranular sliding. The formation of partially ordered structure may enhance plasticity of Ti-Fe-Co compared to Ti-Fe alloys. Moreover a good crystal lattice correspondence between cP2 and cI2 phases was found. Rough primary dendrites and eutectic rods of the cP2 intermetallic phase act as efficient barriers for shear strain and crack propagation.

本文言語English
ページ(範囲)181-186
ページ数6
ジャーナルIntermetallics
15
2
DOI
出版ステータスPublished - 2007 2

ASJC Scopus subject areas

  • 化学 (全般)
  • 材料力学
  • 機械工学
  • 金属および合金
  • 材料化学

フィンガープリント

「Deformation behavior of high strength metastable hypereutectic Ti-Fe-Co alloys」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル