Deep CNN-Based Computer-Aided Diagnosis for Drowning Detection using Post-mortem Lungs CT Images

Amber Habib Qureshi, Xiaoyong Zhang, Kei Ichiji, Yusuke Kawasumi, Akihito Usui, Masato Funayama, Noriyasu Homma

研究成果: Conference contribution

抄録

Drowning death rate is high in Japan and its diagnosis is still one of the most challenging tasks in the field of forensics due to the complex interpretation of its pathology. Postmortem lungs computed tomography (CT) images can be used for interpretation of forensic pathology due to its benefits but shortage of specialists is a critical problem. Also, manually interpreting CT images is a tiring and time-taking process. In this paper, we proposed a computer-aided diagnosis system based on a deep convolutional neural network (DCNN) for classifying the post-mortem lungs CT images into drowning and non-drowning. A pre-trained DCNN was implemented in this study for classification of post-mortem lungs CT images. The DCNN was trained and tested using a post-mortem lungs CT image database obtained from Tohoku University Autopsy Imaging Center. The training process involves fine-tuning. The experimental results demonstrated a receiver operating characteristic (ROC) curve and an area under the curve (AUC) of 95 percent was achieved in drowning detection using the post-mortem lungs CT images.

本文言語English
ホスト出版物のタイトルProceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
編集者Yufei Huang, Lukasz Kurgan, Feng Luo, Xiaohua Tony Hu, Yidong Chen, Edward Dougherty, Andrzej Kloczkowski, Yaohang Li
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2309-2313
ページ数5
ISBN(電子版)9781665401265
DOI
出版ステータスPublished - 2021
イベント2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 - Virtual, Online, United States
継続期間: 2021 12月 92021 12月 12

出版物シリーズ

名前Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021

Conference

Conference2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
国/地域United States
CityVirtual, Online
Period21/12/921/12/12

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • 生体医工学
  • 健康情報学
  • 情報システムおよび情報管理

フィンガープリント

「Deep CNN-Based Computer-Aided Diagnosis for Drowning Detection using Post-mortem Lungs CT Images」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル