Data analysis of multi-dimensional thermophysical properties of liquid substances based on clustering approach of machine learning

Gota Kikugawa, Yuta Nishimura, Koji Shimoyama, Taku Ohara, Tomonaga Okabe, Fumio S. Ohuchi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In order to develop an efficient framework for global screening in the material exploration, we performed a clustering analysis of machine learning on the multi-dimensional thermophysical properties of the liquid substances. Data mining using a self-organizing map (SOM)based on the unsupervised learning was employed to project high-dimensional thermophysical data onto a low-dimensional space. Here we adopted 98 liquid substances with eight thermo-physical properties for the SOM training in order to group the liquid substances. The present SOM-clustering approach properly categorized liquid substances according to the chemical species characterized by the functional groups.

本文言語English
ページ(範囲)109-114
ページ数6
ジャーナルChemical Physics Letters
728
DOI
出版ステータスPublished - 2019 8

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

フィンガープリント 「Data analysis of multi-dimensional thermophysical properties of liquid substances based on clustering approach of machine learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル