Damped wave equation in the subcritical case

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin

研究成果: Article査読

28 被引用数 (Scopus)

抄録

We study large time asymptotics of small solutions to the Cauchy problem for the one dimensional nonlinear damped wave equation (1) {vtt + vt - vxx + v1+σ = 0, x ∈ R, t > 0, v (0, x) = ε v0 (x), vt (0, x) = ε v1 (x) in the sub critical case σ ∈ (2 - ε3, 2). We assume that the initial data v0, (1 + ∂x)-1 v1 ∈ L ∩ L1,a, a ∈ (0, 1) where L1,a = { ∈ L1; ∥φ∥ L1a, = ∥〈·〉a φ∥ L1 < ∞}, 〈x〉 = 1 + x2. Also we suppose that the mean value of initial data ∫R (v0 (x) + v1 (x)) dx > 0. Then there exists a positive value ε such that the Cauchy problem (1) has a unique global solution v (t, x) ∈ C ([0, ∞); L ∩ L1,a), satisfying the following time decay estimate: ∥v (t)∥ L∞ ≤ C ε 〈t〉 -1/σ for large t > 0, here 2 - ε3 < σ < 2.

本文言語English
ページ(範囲)161-194
ページ数34
ジャーナルJournal of Differential Equations
207
1
DOI
出版ステータスPublished - 2004 12月 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Damped wave equation in the subcritical case」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル