Cyclic electron flow around PSI functions in the photoinhibited rice leaves

Satoshi Kubo, Takehiro Masumura, Yuhi Saito, Hiroshi Fukayama, Yuji Suzuki, Toshio Sugimoto, Amane Makino, Katsumi Amako, Chikahiro Miyake

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We investigated the regulation mechanism of cyclic electron flow around photosystem I (CEF-PSI) in the rice leaves which suffered from photosystem II (PSII) photoinhibition. High-light (HL) treatment [2000 μmol photon m-2 s-1 at 0% carbon dioxide (CO2), 2% oxygen (O2) and 25°C] of rice leaves decreased both the maximum quantum efficiency of PSII (Fv/Fm) and the light-dependent O2-evolution rate [V(O2)]. High-light treatment did not affect the relative electron flux in PSI [Φ(PSI) × PFD]. In non-treated leaves, increasing in the photon flux density (PFD) enhanced V(O2), Φ(PSI) × PFD and the ratio of oxidized P700 to total P700 [(P700+)/(P700)total]. Φ(PSI) × PFD continued to increase even after the saturation of V(O2) against PFD. These results suggested that the electrons not used for the major electron sink, photosynthetic carbon reduction-cycle, did turnover in PSI, that is, CEF-PSI functioned at a higher PFD. High-light treatments did not affect the activity of CEF-PSI and increased (P700+)/(P700)total in the lower PFDs, compared to non-treated leaves. The activity of CEF-PSI depends on the amount of oxidized PQ. Photoinhibition of PSII suppressed electron influx from PSII to photosynthetic linear electron transport. The enhanced (P700+)/(P700)total suggested the increase in the ratio of oxidized plastoquinone (PQ) to total PQ, which supported the activity of CEF-PSI in the photoinhibited leaves.

本文言語English
ページ(範囲)105-113
ページ数9
ジャーナルSoil Science and Plant Nutrition
57
1
DOI
出版ステータスPublished - 2011 2 1

ASJC Scopus subject areas

  • Soil Science
  • Plant Science

フィンガープリント 「Cyclic electron flow around PSI functions in the photoinhibited rice leaves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル