Critical Points and Local Behavior

Kiyohiro Ikeda, Kazuo Murota

研究成果: Chapter

抄録

Bifurcation, which means the emergence of multiple solutions for the same value of parameter f, is induced by the criticality of the Jacobian matrix of the system, as demonstrated using examples in the previous chapter (cf., §1.2.2). The “bifurcation equation” is a standard means to describe bifurcation behavior. In a neighborhood of a simple critical point, for example, a set of equilibrium equations is reduced to a single bifurcation equation, by condensing the influence of a number of independent variables into a single scalar variable by the implicit function theorem.

本文言語English
ホスト出版物のタイトルApplied Mathematical Sciences (Switzerland)
出版社Springer
ページ35-68
ページ数34
DOI
出版ステータスPublished - 2010

出版物シリーズ

名前Applied Mathematical Sciences (Switzerland)
149
ISSN(印刷版)0066-5452
ISSN(電子版)2196-968X

ASJC Scopus subject areas

  • 応用数学

フィンガープリント

「Critical Points and Local Behavior」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル