Covariant lyapunov analysis of chaotic kolmogorov flows and time-correlation function

Masanobu Inubushi, Miki U. Kobayashi, Shin Ichi Takehiro, Michio Yamada

    研究成果: Conference article

    4 引用 (Scopus)

    抜粋

    We study a hyperbolic/non-hyperbolic transition of the flows on two-dimensional torus governed by the incompressible Navier-Stokes equation (Kolmogorov flows) using the method of covariant Lyapunov analysis developed by Ginelli et al.(2007) [1]. As the Reynolds number is increased, chaotic Kolmogorov flows become non-hyperbolic at a certain Reynolds number, where some new physical property is expected to appear in the long-time statistics of the fluid motion. Here we focus our attention on behaviors of the time-correlation function of vorticity across the transition point, and that the long-time asymptotic form of the correlation function changes at the Reynolds number close to that of the hyperbolic/non-hyperbolic transition, which suggests that the time-correlation function reflects the transition to non-hyperbolicity [3].

    元の言語English
    ページ(範囲)244-248
    ページ数5
    ジャーナルProcedia IUTAM
    5
    DOI
    出版物ステータスPublished - 2012 1 1
    イベントIUTAM Symposium on 50 Years of Chaos: Applied and Theoretical - Kyoto, Japan
    継続期間: 2011 11 282011 12 2

    ASJC Scopus subject areas

    • Mechanical Engineering

    フィンガープリント Covariant lyapunov analysis of chaotic kolmogorov flows and time-correlation function' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用