Core molecule dependence of energy migration in phenylacetylene nanostar dendrimers: Ab initio molecular orbital-configuration interaction based quantum master equation study

Ryohei Kishi, Takuya Minami, Hitoshi Fukui, Hideaki Takahashi, Masayoshi Nakano

研究成果: Article査読

13 被引用数 (Scopus)

抄録

The core molecule dependence of energy (exciton) migration in phenylacetylene nanostar dendrimers is investigated using the ab initio molecular orbital (MO)-configuration interaction based quantum master equation approach. We examine three kinds of core molecular species, i.e., benzene, anthracene, and pentacene, with different highest occupied MO-lowest unoccupied MO (HOMO-LUMO) gaps, which lead to different orbital interactions between the dendron parts and the core molecule. The nanostars bearing anthracene and pentacene cores are characterized by multistep exciton states with spatially well-segmented distributions: The exciton distributions of high-lying exciton states are spatially localized well in the periphery region, whereas those of low-lying exciton states are done in the core region. On the other hand, for the nanostar bearing benzene core, which also has multistep exciton states, the spatial exciton distributions of low-lying exciton states are delocalized over the dendron and the core regions. It is found that the former nanostars exhibit nearly complete exciton migration from the periphery to the core molecule in contrast to the latter one, in which significant exciton distribution remains in the dendron parts attached to the core after the exciton relaxation, although all these dendrimers exhibit fast exciton relaxation from the initially populated states. It is predicted from the analysis based on the MO correlation diagrams and the relative relaxation factor that the complete exciton migration to the core occurs not only when the HOMO-LUMO gap of the core molecule is nearly equal to that of the dendron parts attached to the core (anthracene case) but also when fairly smaller than that (pentacene case), whereas the complete migration is not achieved when the HOMO-LUMO gap of the core is larger than that of the dendron parts (benzene case). These results suggest that the fast and complete exciton migration of real dendrimers could be realized by adjusting the HOMO-LUMO gap of the core molecule to be smaller than that of dendron parts, although there exist more complicated relaxation processes as compared to simple dendritic aggregate models studied so far.

本文言語English
論文番号244306
ジャーナルJournal of Chemical Physics
128
24
DOI
出版ステータスPublished - 2008
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)
  • 物理化学および理論化学

フィンガープリント

「Core molecule dependence of energy migration in phenylacetylene nanostar dendrimers: Ab initio molecular orbital-configuration interaction based quantum master equation study」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル