Convergences and projection Markov property of Markov processes on ultrametric spaces

Kohei Suzuki

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Let (S, ρ) be an ultrametric space satisfying certain conditions and Sk be the quotient space of S with respect to the partition by balls with a fixed radius φ(k). We prove that, for a Hunt process X on S associated with a Dirichlet form (ε, F), a Hunt process Xk on Sk associated with the averaged Dirichlet form (εk, Fk) is Mosco convergent to X, and under certain additional conditions, Xk converges weakly to X. Moreover, we give a sufficient condition for the Markov property of X to be preserved under the canonical projection πk to Sk. In this case, we see that the projected process πk ◦ X is identical in law to Xk and converges almost surely to X.

本文言語English
ページ(範囲)569-588
ページ数20
ジャーナルPublications of the Research Institute for Mathematical Sciences
50
3
DOI
出版ステータスPublished - 2014
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Convergences and projection Markov property of Markov processes on ultrametric spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル