Control of optical absorption of silica glass by Ag ion implantation and subsequent heavy ion irradiation

Tomoko Yamada, Kengo Fukuda, Satoshi Semboshi, Yuichi Saitoh, Hiroshi Amekura, Akihiro Iwase, Fuminobu Hori

研究成果: Article査読

抄録

Silica glass samples were implanted with 50-380 keV Ag ions. After ion implantation, some samples were subsequently irradiated with 16 MeV Au ions. The effects of the implantation and the subsequent Au ion irradiation on the optical absorption spectra and morphologies of the Ag nanoparticles produced in the samples were studied by using an ultraviolet-visible scanning spectrophotometer and a transmission electron microscope, respectively. For the samples implanted with 200 keV or 380 keV Ag ions to high fluence, optical absorption peaks appeared around 600 nm, as well as the well-known surface plasmon resonance peaks around 400 nm, and Ag spherical nanoparticles with a high spatial density were observed. The absorption peaks around 600 nm are explained as being due to interactions between the Ag nanoparticles (inter-particle interaction). Under the subsequent irradiation with 16 MeV Au ions, the optical absorption around 400 and 600 nm showed a blue shift and the peak intensity markedly decreased. Transmission electron microscopy observation revealed an elongation of the Ag nanoparticles along the direction of the 16 MeV Au irradiation, and a resulting enlargement of the distances between the nanoparticles. The change in the peak wavelength and peak intensity of the optical absorption by the 16 MeV Au irradiation can, therefore, be explained as originating from a decrease in inter-particle interaction.

本文言語English
論文番号455706
ジャーナルNanotechnology
31
45
DOI
出版ステータスPublished - 2020 11 6

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

フィンガープリント 「Control of optical absorption of silica glass by Ag ion implantation and subsequent heavy ion irradiation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル