Concentration of least-energy solutions to a semilinear Neumann problem in thin domains

Masaya Maeda, Kanako Suzuki

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We consider the following semilinear elliptic equation: Here, ε>0 and p>1 Ωε is a domain in R2 with smooth boundary ∂Ωε, and ν denotes the outer unit normal to ∂Ωε. The domain Ωε depends on ε, which shrinks to a straight line in the plane as ε→0. In this case, a least-energy solution exists for each ε sufficiently small, and it concentrates on a line. Moreover, the concentration line converges to the narrowest place of the domain as ε→0.

本文言語English
ページ(範囲)465-484
ページ数20
ジャーナルJournal of Mathematical Analysis and Applications
411
2
DOI
出版ステータスPublished - 2014 3月 15

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Concentration of least-energy solutions to a semilinear Neumann problem in thin domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル