Concentration of eigenfunctions of the Laplacian on a closed Riemannian manifold

Kei Funano, Yohei Sakurai

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We study concentration phenomena of eigenfunctions of the Laplacian on closed Riemannian manifolds. We prove that the volume measure of a closed manifold concentrates around nodal sets of eigenfunctions exponen-tially. Applying the method of Colding and Minicozzi we also prove restricted exponential concentration inequalities and restricted Sogge-type Lp moment estimates of eigenfunctions.

本文言語English
ページ(範囲)3155-3164
ページ数10
ジャーナルProceedings of the American Mathematical Society
147
7
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Concentration of eigenfunctions of the Laplacian on a closed Riemannian manifold」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル