Computing the longest common subsequence of two run-length encoded strings

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

The present article reveals that the problem of finding the longest common subsequence of two strings given in run-length encoded form can be solved in O(mnlog log min(m, n, M/m, N/n, X)) time, where one input string is of length M with m runs, the other is of length N with n runs, and X is the average difference between the length of a run from one input string and that of a run from the other.

本文言語English
ホスト出版物のタイトルAlgorithms and Computation - 23rd International Symposium, ISAAC 2012, Proceedings
出版社Springer Verlag
ページ197-206
ページ数10
ISBN(印刷版)9783642352607
DOI
出版ステータスPublished - 2012
イベント23rd International Symposium on Algorithms and Computation, ISAAC 2012 - Taipei, Taiwan, Province of China
継続期間: 2012 12 192012 12 21

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7676 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other23rd International Symposium on Algorithms and Computation, ISAAC 2012
国/地域Taiwan, Province of China
CityTaipei
Period12/12/1912/12/21

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Computing the longest common subsequence of two run-length encoded strings」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル