Computing the geodesic centers of a polygonal domain

Sang Won Bae, Matias Korman, Yoshio Okamoto

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We present an algorithm that computes the geodesic center of a given polygonal domain. The running time of our algorithm is O(n12+ϵ) for any ϵ>0, where n is the number of corners of the input polygonal domain. Prior to our work, only the very special case where a simple polygon is given as input has been intensively studied in the 1980s, and an O(nlog⁡n)-time algorithm is known by Pollack et al. Our algorithm is the first one that can handle general polygonal domains having one or more polygonal holes.

本文言語English
ページ(範囲)3-9
ページ数7
ジャーナルComputational Geometry: Theory and Applications
77
DOI
出版ステータスPublished - 2019 3

ASJC Scopus subject areas

  • Computer Science Applications
  • Geometry and Topology
  • Control and Optimization
  • Computational Theory and Mathematics
  • Computational Mathematics

フィンガープリント 「Computing the geodesic centers of a polygonal domain」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル