Computational fluid dynamics analysis of the pump parameters in the helical flow pump

Kyohei Hosoda, Kohei Ishii, Takashi Isoyama, Itsuro Saito, Yusuke Inoue, Kouki Ariyoshi, Toshiya Ono, Hidemoto Nakagawa, Kou Imachi, Hiroshi Kumagai, Yusuke Abe

研究成果: Article査読

4 被引用数 (Scopus)

抄録

The helical flow pump (HFP) was invented to develop a total artificial heart at the University of Tokyo in 2005. The HFP consists of the multi-vane impeller involving rotor magnets, a motor stator and pump housing having double-helical volutes. To investigate the characteristics of the HFP, computational fluid dynamics analysis was performed. Validation of the computational model was performed with the data of the actual pump. A control computational model in which the vane area corresponded approximately to that of the actual pump was designed for the parametric study. The parametric study was performed varying the vane height, vane width and helical volute pitch. When the vane height was varied from 0.5 to 1.5 times that of the control computational model, the H-Q (pressure head vs. flow) and efficiency curves were translated in parallel with the vane height. When the vane height was two and three times that of the control computational model, the profile of these curves changed. From the results, the best proportion for the vane was considered to be a vane height between 1.5 and 2 times the vane width. The effect of vane width was not very strong compared to that of the vane height. A similar tendency in vane height was observed by varying the helical volute pitch. The best helical volute-pitch size is considered to be between 1.5 and 2 times the vane width. Although further study is necessary to determine the best values for these parameters, the characteristics of the pump parameters in the HFP could be approximately clarified.

本文言語English
ページ(範囲)9-15
ページ数7
ジャーナルJournal of Artificial Organs
17
1
DOI
出版ステータスPublished - 2014 3

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering
  • Cardiology and Cardiovascular Medicine

フィンガープリント 「Computational fluid dynamics analysis of the pump parameters in the helical flow pump」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル