Complexity of projected images of convex subdivisions

Tomio Hirata, Jiří Matoušek, Xue Hou Tan, Takeshi Tokuyama

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Let S be a subdivision of Rd into n convex regions. We consider the combinatorial complexity of the image of the (k - 1)-skeleton of S orthogonally projected into a k-dimensional subspace. We give an upper bound of the complexity of the projected image by reducing it to the complexity of an arrangement of polytopes. If k = d - 1, we construct a subdivision whose projected image has Ω(n⌊(3d-2)/2⌋) complexity, which is tight when d ≤ 4. We also investigate the number of topological changes of the projected image when a three-dimensional subdivision is rotated about a line parallel to the projection plane.

本文言語English
ページ(範囲)293-308
ページ数16
ジャーナルComputational Geometry: Theory and Applications
4
6
DOI
出版ステータスPublished - 1994 12月

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 幾何学とトポロジー
  • 制御と最適化
  • 計算理論と計算数学
  • 計算数学

フィンガープリント

「Complexity of projected images of convex subdivisions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル