Colorful Strips

Greg Aloupis, Jean Cardinal, Sébastien Collette, Shinji Imahori, Matias Korman, Stefan Langerman, Oded Schwartz, Shakhar Smorodinsky, Perouz Taslakian

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We study the following geometric hypergraph coloring problem: given a planar point set and an integer k, we wish to color the points with k colors so that any axis-aligned strip containing sufficiently many points contains all colors. We show that if the strip contains at least 2k-1 points, such a coloring can always be found. In dimension d, we show that the same holds provided the strip contains at least k(4 ln k + ln d) points. We also consider the dual problem of coloring a given set of axis-aligned strips so that any sufficiently covered point in the plane is covered by k colors. We show that in dimension d the required coverage is at most d(k-1) + 1. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. From the computational point of view, we show that deciding whether a three-dimensional point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. This shows a big contrast with the planar case, for which this decision problem is easy.

本文言語English
ページ(範囲)327-339
ページ数13
ジャーナルGraphs and Combinatorics
27
3
DOI
出版ステータスPublished - 2011 5月 1
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「Colorful Strips」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル