TY - JOUR
T1 - Close relationship between leaf life span and seedling relative growth rate in temperate hardwood species
AU - Seiwa, Kenji
AU - Kikuzawa, Kihachiro
N1 - Funding Information:
Acknowledgments We thank an anonymous reviewer for comments that improved quality of this paper. We also thank Tatsuhiro Asai and Norio, Mizui who contributed field work and to improvement of the manuscript. This work was supported by a grant from Ministry of Education, Science and Culture (No. 17380087, to K.S.).
PY - 2011/1
Y1 - 2011/1
N2 - The life span of resource-acquiring organs (leaves, shoots, fine roots) is closely associated with species successional position and environmental resource availability. We examined to what extent leaf life span is related to inter- and intraspecific variation in seedling relative growth rate (RGR). We examined relationships between relative growth rate in mass (RGRM) or height (RGRH) and leaf life span, together with classical RGRM components [net assimilation rate (NAR), specific leaf area (SLA), leaf weight ratio (LWR), and leaf area ratio (LAR)] for seedlings of five hardwood species of different successional position across a wide range of environmental resource availability, including the presence or absence of leaf litter in shaded forest understory, small canopy gaps, and large canopy gaps. Both SLA and LAR were negatively correlated with RGRM along the environmental gradient for all species. However, positive correlations were observed among species within microsites, indicating that these two components cannot consistently explain the variation in RGRM. Both NAR and LWR affect interspecific, but not intraspecific, variation in RGRM. Leaf life span was negatively correlated with either RGRM or RGRH in both inter- and intraspecific comparisons. Species with short-lived, physiologically active leaves have high growth rates, particularly in resource-rich environments. Consequently, leaf life span is a good predictor of seedling RGR. Leaf life span affects plant performance and has a strong and consistent effect on tree seedling growth, even among contrasting environments.
AB - The life span of resource-acquiring organs (leaves, shoots, fine roots) is closely associated with species successional position and environmental resource availability. We examined to what extent leaf life span is related to inter- and intraspecific variation in seedling relative growth rate (RGR). We examined relationships between relative growth rate in mass (RGRM) or height (RGRH) and leaf life span, together with classical RGRM components [net assimilation rate (NAR), specific leaf area (SLA), leaf weight ratio (LWR), and leaf area ratio (LAR)] for seedlings of five hardwood species of different successional position across a wide range of environmental resource availability, including the presence or absence of leaf litter in shaded forest understory, small canopy gaps, and large canopy gaps. Both SLA and LAR were negatively correlated with RGRM along the environmental gradient for all species. However, positive correlations were observed among species within microsites, indicating that these two components cannot consistently explain the variation in RGRM. Both NAR and LWR affect interspecific, but not intraspecific, variation in RGRM. Leaf life span was negatively correlated with either RGRM or RGRH in both inter- and intraspecific comparisons. Species with short-lived, physiologically active leaves have high growth rates, particularly in resource-rich environments. Consequently, leaf life span is a good predictor of seedling RGR. Leaf life span affects plant performance and has a strong and consistent effect on tree seedling growth, even among contrasting environments.
KW - Canopy gap
KW - Leaf area ratio
KW - Leaf weight ratio
KW - Net assimilation rate
KW - Specific leaf area
KW - Successional position
UR - http://www.scopus.com/inward/record.url?scp=78751575661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78751575661&partnerID=8YFLogxK
U2 - 10.1007/s11284-010-0774-3
DO - 10.1007/s11284-010-0774-3
M3 - Article
AN - SCOPUS:78751575661
VL - 26
SP - 173
EP - 180
JO - Ecological Research
JF - Ecological Research
SN - 0912-3814
IS - 1
ER -