Characterizing non-fickian transport in fractured rock masses using fractional derivative-based mathematical model

Anna Suzuki, Ryuichi Chiba, Takashi Okaze, Yuichi Niibori, Sergei Fomin, Vladimir Chugnov, Toshiyuki Hashida

研究成果: Conference contribution

抄録

A fractional advection-dispersion equation (fADE) was employed to describe non-Fickian mass transport in fractured rock masses. A fracture network model based on fractal geometry was utilized to analyze numerical tracer responses in inhomogeneous rock masses composed of a number of natural fractures. The density of the natural fractures was varied in the numerical analyses. It was shown that non-Fickian transport (anomalous dispersion with heavy tails) was observed for lower natural fracture densities and the tracer response could be described by the fADE. It was suggested that the term of fractional time derivative in the fADE was responsible for the variance of travel time in the tracer responses, resulting in the non-Fickian transport. The results obtained in this study may support the use of the fADE for characterizing complex fluid flow in geothermal reservoirs.

本文言語English
ホスト出版物のタイトルGeothermal Resources Council Annual Meeting 2010, Geothermal 2010
ページ1075-1080
ページ数6
出版ステータスPublished - 2010 12 1
イベントGeothermal Resources Council Annual Meeting 2010, Geothermal 2010 - Sacramento, CA, United States
継続期間: 2010 10 242010 10 27

出版物シリーズ

名前Transactions - Geothermal Resources Council
34 2
ISSN(印刷版)0193-5933

Other

OtherGeothermal Resources Council Annual Meeting 2010, Geothermal 2010
国/地域United States
CitySacramento, CA
Period10/10/2410/10/27

ASJC Scopus subject areas

  • 再生可能エネルギー、持続可能性、環境
  • エネルギー工学および電力技術
  • 地球物理学

フィンガープリント

「Characterizing non-fickian transport in fractured rock masses using fractional derivative-based mathematical model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル