Characteristics of small scale non-monotonic neuron networks having large potentiality for learning

Mitsunaga Kinjo, Shigeo Sato, Koji Nakajima

研究成果: Paper査読

1 被引用数 (Scopus)

抄録

In this paper, we report a study on learning ability of a Deterministic Boltzmann Machine (DBM) with neurons which have a non-monotonic activation function. We use an end-cut-off-type function with a threshold parameter `θ' as the non-monotonic function. Numerical simulations of nonlinear problems, such as the 2-Parity problem and the 4-Parity problem, show that the DBM network with non-monotonic neurons has higher learning ability compared to the network with monotonic neurons.

本文言語English
ページ171-174
ページ数4
出版ステータスPublished - 2000 1 1
イベントInternational Joint Conference on Neural Networks (IJCNN'2000) - Como, Italy
継続期間: 2000 7 242000 7 27

Other

OtherInternational Joint Conference on Neural Networks (IJCNN'2000)
CityComo, Italy
Period00/7/2400/7/27

ASJC Scopus subject areas

  • ソフトウェア

フィンガープリント

「Characteristics of small scale non-monotonic neuron networks having large potentiality for learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル