Characteristic equation for autonomous planar half-linear differential systems

M. Onitsuka, S. Tanaka

研究成果: Article査読

3 被引用数 (Scopus)

抄録

The autonomous planar half-linear differential system (Formula Presented.) is considered, where a, b, c and d are real constants, p and p are positive numbers with 1/p + 1/p= 1 , and ϕq(s) = |s|q - 2s for s≠ 0 and ϕq(0) = 0 , q> 1. When p= 2 , this system is reduced to the linear system (Formula Presented.), which can be solved by eigenvalues of the matrix (Formula Presented.), that is, roots of the characteristic equation (λ- a) (λ- d) - bc= 0. In this paper, the characteristic equation for the autonomous planar half-linear differential system is introduced, and the asymptotic behavior of its solutions is established by roots of the characteristic equation.

本文言語English
ページ(範囲)336-364
ページ数29
ジャーナルActa Mathematica Hungarica
152
2
DOI
出版ステータスPublished - 2017 8月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Characteristic equation for autonomous planar half-linear differential systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル