Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of Aspergillus oryzae

Silai Zhang, Hiroki Sato, Sakurako Ichinose, Mizuki Tanaka, Ken Miyazawa, Akira Yoshimi, Keietsu Abe, Takahiro Shintani, Katsuya Gomi

研究成果: Article査読

15 被引用数 (Scopus)

抄録

We have previously reported that α-amylase (Taka-amylase A, TAA) activity disappears in the later stage of submerged Aspergillus oryzae culture as a result of TAA adsorption onto the cell wall. Chitin, one of the major components of the cell wall, was identified as a potential factor that facilitates TAA adsorption. However, TAA adsorption only occurred in the later stage of cultivation, although chitin was assumed to be sufficiently abundant in the cell wall regardless of the submerged culture period. This suggested the presence a factor that inhibits TAA adsorption to the cell wall in the early stage of cultivation. In the current study, we identified α-1,3-glucan as a potential inhibiting factor for TAA adsorption. We constructed single, double, and triple disruption mutants of three α-1,3-glucan synthase genes (agsA, agsB, and agsC) in A. oryzae. Growth characteristics and cell wall component analysis of these disruption strains showed that AgsB plays a major role in α-1,3-glucan synthesis. In the ΔagsB mutant, TAA was adsorbed onto the mycelium in all stages of cultivation (early and later), and the ΔagsB mutant cell walls had a significantly high capacity for TAA adsorption. Moreover, the α-1,3-glucan content of the cell wall prepared from the wild-type strain in the later stage of cultivation was markedly reduced compared with that in the early stage. These results suggest that α-1,3-glucan is a potential inhibiting factor for TAA adsorption onto the cell wall component, chitin, in the early stage of submerged culture in A. oryzae.

本文言語English
ページ(範囲)47-53
ページ数7
ジャーナルJournal of Bioscience and Bioengineering
124
1
DOI
出版ステータスPublished - 2017 7

ASJC Scopus subject areas

  • バイオテクノロジー
  • バイオエンジニアリング
  • 応用微生物学とバイオテクノロジー

フィンガープリント

「Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of Aspergillus oryzae」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル