Catalytic conversion of CO, NO and SO2 on the supported sulfide catalyst: I. Catalytic reduction of SO2 by CO

S. X. Zhuang, H. Magara, M. Yamazaki, Y. Takahashi, M. Yamada

    研究成果: Article査読

    31 被引用数 (Scopus)


    Catalytic reduction of SO2 to elemental sulfur by CO has been systematically investigated over γ-Al2O3-supported sulfide catalysts of transition metals including Co, Mo, Fe, CoMo and FeMo with different loadings of the metals. The sulfided CoMo/Al2O3 exhibited outstanding activity: a complete conversion of SO2 was achieved at a temperature of 300°C. The reaction proceeds catalytically and consistently over time and most efficiently at a molar feed ratio CO/SO2 = 2. A precursor CoMo/Al2O3 oxide which experienced sulfurization through the CO-SO2 reaction yielded a working sulfide catalyst having a yet lower activity than the CoMo catalyst sulfided before reaction (pre-sulfiding). The catalytic activity of various metal sulfides decreased in order of 4% Co 16% Mo > 4% Fe 15% Mo > 16% Mo ≥ 25% Mo > 14% Co ≥ 4% Co > 4% Fe. A DRIFT study showed that CO adsorbs exclusively on CoMo phase and that SO2 predominantly on γ-Al2O3. It is suggested that the Co-Mo-S structure is more adequate than the other metal-sulfur structures for the formation of a carbonyl sulfide (COS) intermediate because of the proper strength of metal-sulfur bond, and catalytically works with γ-Al2O3 for the COS-SO2 reaction.

    ジャーナルApplied Catalysis B: Environmental
    出版ステータスPublished - 2000 1 17

    ASJC Scopus subject areas

    • Catalysis
    • Environmental Science(all)
    • Process Chemistry and Technology

    フィンガープリント 「Catalytic conversion of CO, NO and SO<sub>2</sub> on the supported sulfide catalyst: I. Catalytic reduction of SO<sub>2</sub> by CO」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。