Calabi’s Conjecture of the Kähler–Ricci Soliton Type

Kenta Tottori

研究成果: Article査読

抄録

In this paper, we discuss Calabi’s equation of the Kähler–Ricci soliton type on a compact Kähler manifold. This equation was introduced by Zhu as a generalization of Calabi’s conjecture. We give necessary and sufficient conditions for the unique existence of a solution for this equation on a compact Kähler manifold with a holomorphic vector field which has a zero point. We also consider the case of a nowhere vanishing holomorphic vector field, and give sufficient conditions for the unique existence of a solution for this equation.

本文言語English
ページ(範囲)3325-3343
ページ数19
ジャーナルJournal of Geometric Analysis
26
4
DOI
出版ステータスPublished - 2016 10 1

ASJC Scopus subject areas

  • Geometry and Topology

フィンガープリント 「Calabi’s Conjecture of the Kähler–Ricci Soliton Type」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル