TY - JOUR
T1 - BSC1 inhibition complements effects of vasopressin V2 receptor antagonist on hyponatremia in SIADH rats
AU - Kazama, Itsuro
AU - Hatano, Ryo
AU - Michimata, Mari
AU - Suzuki, Katsuya
AU - Arata, Tomohiro
AU - Suzuki, Michiko
AU - Miyama, Noriyuki
AU - Sato, Akira
AU - Satomi, Susumu
AU - Ejima, Yutaka
AU - Sasaki, Sei
AU - Matsubara, Mitsunobu
N1 - Funding Information:
This work was supported by research grants for scientific research (12877163) from the Ministry of Science and Education.
PY - 2005/5
Y1 - 2005/5
N2 - Background. Severe hyponatremia is most frequently caused by the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Although the expressional alteration of the kidney-specific apical water channel, aquaporin 2 (AQP2), in the collecting duct has been demonstrated to be involved in the development of hyponatremia and the subsequent physiologic reaction that is resistant to arginine vasopressin (AVP; vasopressin escape) in SIADH, the complete pathogenesis of and the appropriate medical treatment for hyponatremia have yet to be elucidated. Methods. Hyponatremia was induced in male Sprague-Dawley rats by water loading and subcutaneous infusion of 1-deamino-8-D-arginine vasopressin (dDAVP). For the treatment, a selective AVP V2 receptor antagonist (OPC-31260) and/or a loop diuretic (furosemide) were administered orally. Protein expression of AQP2 and rat bumetanide-sensitive cotransporter (rBSC1) was examined by Western blotting during the hyponatremia and the subsequent treatment. Results. We noted a markedly high expression of rBSC1 during the development of hyponatremia, and a relatively low expression during vasopressin escape. OPC-31260 administration elevated serum sodium level in a dose-dependent manner. The therapeutic effect, however, declined with increasing number of treatment days, and doses higher than 15 mg/kg/day induced severe toxicity. The physiologic parameters and the alterations of AQP2 and rBSC1 expression during the treatment demonstrated reactions that were completely opposite to those of vasopressin escape. Combination of a furosemide (100 mg/kg/day) and a low dose of OPC-31260 (5 mg/kg/day) additively elevated serum sodium level and sustained the elevated serum sodium level by significantly reducing sodium accumulation in the renal medulla. Conclusion. AVP-induced alterations of rBSC1 expression, as well as those of AQP2, are involved in the pathogenesis of SIADH. The pharmacologic blockade of AVP stimulus in SIADH limits its therapeutic efficacy by discontinuing the vasopressin escape, and the selective inhibition of rBSC1 complements this limitation.
AB - Background. Severe hyponatremia is most frequently caused by the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Although the expressional alteration of the kidney-specific apical water channel, aquaporin 2 (AQP2), in the collecting duct has been demonstrated to be involved in the development of hyponatremia and the subsequent physiologic reaction that is resistant to arginine vasopressin (AVP; vasopressin escape) in SIADH, the complete pathogenesis of and the appropriate medical treatment for hyponatremia have yet to be elucidated. Methods. Hyponatremia was induced in male Sprague-Dawley rats by water loading and subcutaneous infusion of 1-deamino-8-D-arginine vasopressin (dDAVP). For the treatment, a selective AVP V2 receptor antagonist (OPC-31260) and/or a loop diuretic (furosemide) were administered orally. Protein expression of AQP2 and rat bumetanide-sensitive cotransporter (rBSC1) was examined by Western blotting during the hyponatremia and the subsequent treatment. Results. We noted a markedly high expression of rBSC1 during the development of hyponatremia, and a relatively low expression during vasopressin escape. OPC-31260 administration elevated serum sodium level in a dose-dependent manner. The therapeutic effect, however, declined with increasing number of treatment days, and doses higher than 15 mg/kg/day induced severe toxicity. The physiologic parameters and the alterations of AQP2 and rBSC1 expression during the treatment demonstrated reactions that were completely opposite to those of vasopressin escape. Combination of a furosemide (100 mg/kg/day) and a low dose of OPC-31260 (5 mg/kg/day) additively elevated serum sodium level and sustained the elevated serum sodium level by significantly reducing sodium accumulation in the renal medulla. Conclusion. AVP-induced alterations of rBSC1 expression, as well as those of AQP2, are involved in the pathogenesis of SIADH. The pharmacologic blockade of AVP stimulus in SIADH limits its therapeutic efficacy by discontinuing the vasopressin escape, and the selective inhibition of rBSC1 complements this limitation.
KW - Arginine vasopressin
KW - Combination therapy
KW - Furosemide
KW - OPC-31260
UR - http://www.scopus.com/inward/record.url?scp=20244371679&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=20244371679&partnerID=8YFLogxK
U2 - 10.1111/j.1523-1755.2005.00284.x
DO - 10.1111/j.1523-1755.2005.00284.x
M3 - Article
C2 - 15840033
AN - SCOPUS:20244371679
VL - 67
SP - 1855
EP - 1867
JO - Kidney International
JF - Kidney International
SN - 0085-2538
IS - 5
ER -