Boundedness of spectral multipliers for Schrödinger operators on open sets

Tsukasa Iwabuchi, Tokio Matsuyama, Koichi Taniguchi

研究成果: Article

5 引用 (Scopus)

抜粋

Let HV be a self-adjoint extension of the Schrödinger operator −Δ + V (x) with the Dirichlet boundary condition on an arbitrary open set Ω of Rd, where d ≥ 1 and the negative part of potential V belongs to the Kato class on Ω. The purpose of this paper is to prove Lp-Lqestimates and gradient estimates for an operator ϕ(HV ), where ϕ is an arbitrary rapidly decreasing function on R, and ϕ(HV ) is defined via the spectral theorem.

元の言語English
ページ(範囲)1277-1322
ページ数46
ジャーナルRevista Matematica Iberoamericana
34
発行部数3
DOI
出版物ステータスPublished - 2018 1 1

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Boundedness of spectral multipliers for Schrödinger operators on open sets' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用