Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity

Kentarou Fujie, Tomomi Yokota

研究成果: Article査読

25 被引用数 (Scopus)

抄録

This paper presents global existence and boundedness of classical solutions to the fully parabolic chemotaxis system ut=Δu- ∇(uχ(v)∇v),vt=Δv-v+u with the strongly singular sensitivity function χ(v) such that 0<χ(v)≤χ0 vk(χ0>0,k>1). As to the regular case 0<χ(v)≤χ0(1+αv)k(α>0, χ0>0,k>1), it has been shown, by Winkler (2010), that the system has a unique global classical solution which is bounded in time, whereas this method cannot be directly applied to the singular case. In the present work, a uniform-in-time lower bound for v is established and builds a bridge between the regular case as in Winkler (2010) and the singular one.

本文言語English
ページ(範囲)140-143
ページ数4
ジャーナルApplied Mathematics Letters
38
DOI
出版ステータスPublished - 2014 12

ASJC Scopus subject areas

  • Applied Mathematics

フィンガープリント 「Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル