Blow-up theorem for semilinear wave equations with non-zero initial position

Hiroyuki Takamura, Hiroshi Uesaka, Kyouhei Wakasa

研究成果: Article査読

6 被引用数 (Scopus)

抄録

One of the features of solutions of semilinear wave equations can be found in blow-up results for non-compactly supported data. In spite of finite propagation speed of the linear wave, we have no global in time solution for any power nonlinearity if the spatial decay of the initial data is weak. This was first observed by Asakura (1986) [2] finding out a critical decay to ensure the global existence of the solution. But the blow-up result is available only for zero initial position having positive speed.In this paper the blow-up theorem for non-zero initial position by Uesaka (2009) [22] is extended to higher-dimensional case. And the assumption on the nonlinear term is relaxed to include an example, |u|p-1u. Moreover the critical decay of the initial position is clarified by example.

本文言語English
ページ(範囲)914-930
ページ数17
ジャーナルJournal of Differential Equations
249
4
DOI
出版ステータスPublished - 2010 8月
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Blow-up theorem for semilinear wave equations with non-zero initial position」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル