Blow-up set for a semilinear heat equation with small diffusion

Yohei Fujishima, Kazuhiro Ishige

研究成果: Article査読

15 被引用数 (Scopus)

抄録

We consider the blow-up problem for a semilinear heat equation, where Ω is a domain in RN, N≥1, ε{lunate}>0, p>1, and T>0. In this paper, under suitable assumptions on {φε{lunate}}, we prove that, if the family of the solutions {uε{lunate}} satisfies a uniform type I blow-up estimate with respect to ε{lunate}, then the solution uε{lunate} blows up only near the maximum points of the initial datum φε{lunate} for any sufficiently small ε{lunate}>0. This is proved without any conditions on the exponent p and the domain Ω, such as (N-2)p<N+2 and the convexity of the domain Ω.

本文言語English
ページ(範囲)1056-1077
ページ数22
ジャーナルJournal of Differential Equations
249
5
DOI
出版ステータスPublished - 2010 9

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「Blow-up set for a semilinear heat equation with small diffusion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル