Blow-up set for a semilinear heat equation and pointedness of the initial data

Yohei Fujishima, Kazuhiro Ishige

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We consider the blow-up problem for a semilinear heat equation, (equation presented) where ε> 0, p> 1, N≥1, Ω is a domain in ℝN, and φ is a nonnegative smooth bounded function in Ω. It is known that, under suitable assumptions, if ε is sufficiently small, then the solution of (E) blows up only near the maximum points of the initial function φ (see, for example, [7]). In this paper, as a continuation of [7], we study the relationship between the location of the blow-up set and the level sets of the initial function φ. We also prove that the location of the blow-up set depends on the mean curvature of the graph of the initial function on its maximum points.

本文言語English
ページ(範囲)627-663
ページ数37
ジャーナルIndiana University Mathematics Journal
61
2
DOI
出版ステータスPublished - 2012

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Blow-up set for a semilinear heat equation and pointedness of the initial data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル