Blow-up rate of the scalar curvature along the conical Kähler–Ricci flow with finite time singularities

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We investigate the scalar curvature behavior along the normalized conical Kähler–Ricci flow ωt, which is the conic version of the normalized Kähler–Ricci flow, with finite maximal existence time T<∞. We prove that the scalar curvature of ωt is bounded from above by C/(T−t)2 under the existence of a contraction associated to the limiting cohomology class [ωT]. This generalizes Zhang's work to the conic case.

本文言語English
ページ(範囲)1-16
ページ数16
ジャーナルDifferential Geometry and its Application
58
DOI
出版ステータスPublished - 2018 6
外部発表はい

ASJC Scopus subject areas

  • Analysis
  • Geometry and Topology
  • Computational Theory and Mathematics

フィンガープリント 「Blow-up rate of the scalar curvature along the conical Kähler–Ricci flow with finite time singularities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル