Block-diagonalization method for symmetric structures with rotational displacements

Ichiro Ario, Kiyohiro Ikeda, Kazuo Murota

研究成果: Article査読

抄録

The group-representation theory guarantees that the (tangent) stiffness matrix of symmetric structures can be put into a block-diagonal form by means of a suitable (local) geometric transformation. This transformation decomposes the linear equilibrium equation of symmetric structures into a number of independent equations, and hence is advantageous for parallel analysis. The block-diagonalization method, with so far has mainly been applied for translational displacements, is extended here to rotational ones. The interrelationship between the symmetries of rotational and translational displacements is investigated by means of group theory to arrive at the transformation matrix of rotational ones.

本文言語English
ページ(範囲)27-36
ページ数10
ジャーナルDoboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers
489 pt 1-27
DOI
出版ステータスPublished - 1994
外部発表はい

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「Block-diagonalization method for symmetric structures with rotational displacements」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル