Binary hydrogen-tetrahydrofuran clathrate hydrate formation kinetics and models

Yorihiko Nagai, Hiroki Yoshioka, Masaki Ota, Yoshiyuki Sato, Hiroshi Inomata, Richard L. Smith, Cor J. Peters

研究成果: Article査読

47 被引用数 (Scopus)


Binary H2-THF clathrate hydrate formation kinetics were investigated with a pressure decay method at temperatures from 266.7 to 275.1 K, at initial pressures from 3.6 to 8.4 MPa, and at stoichiometric THF hydrate concentrations for particle sizes between 212 and 1,400 μm. Formation rate increased for smaller particle sizes, higher pressures and lower-temperatures. A hydrogen delocalization model and a proposed hydrogen hydrate phase diffusion (HHPD) model were used to analyze the formation mechanisms. The HHPD model assumes that the H2-THF hydrate phase is formed due to hydrogen adsorption onto the particle surface that is followed by subsequent diffusion of hydrogen into the clathrate hydrate. The HHPD model could express the kinetics quantitatively at the experimental conditions studied. Values of the hydrogen diffusion coefficient in the clathrate hydrate estimated from the bulk data and the phase thickness in the HHPD model agreed well with the literature.

ジャーナルAIChE Journal
出版ステータスPublished - 2008 11月

ASJC Scopus subject areas

  • バイオテクノロジー
  • 環境工学
  • 化学工学(全般)


「Binary hydrogen-tetrahydrofuran clathrate hydrate formation kinetics and models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。