Bifurcation behaviors of cylindrical soils

Kiyohiro Ikeda, Kazuo Murota

研究成果: Chapter

抄録

Cylindrical soils undergo complicated bifurcation behaviors due to the loss of symmetry. As a first step to model its symmetry, the dihedral group symmetry of their cross section is exploited in Chaps. 9 and 11. To exploit symmetry breaking in the axial direction, this chapter deals with a larger group D∞h (≅ O (2 ) × ℤ2), which denotes the combination of upside-down symmetry and axisymmetry of a cylindrical domain. Recursive bifurcation and mode switching are highlighted as important behaviors. The perfect system is recovered with reference to imperfect behaviors of cylindrical soils using the procedure advanced in Chap. 6. Group-theoretic bifurcation theory presented in Chap. 8 and its application to the dihedral group in Chap. 9 are foundations of this chapter. An extension to a larger symmetry group O(2) ×O(2) is to be given in Chap. 16 to detect patterns with high spatial frequencies.

本文言語English
ホスト出版物のタイトルApplied Mathematical Sciences (Switzerland)
出版社Springer
ページ405-433
ページ数29
DOI
出版ステータスPublished - 2019 1 1

出版物シリーズ

名前Applied Mathematical Sciences (Switzerland)
149
ISSN(印刷版)0066-5452
ISSN(電子版)2196-968X

ASJC Scopus subject areas

  • Applied Mathematics

フィンガープリント 「Bifurcation behaviors of cylindrical soils」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル