Bifurcating critical points of bending energy under constraints related to the shape of red blood cells

Takeyuki Nagasawa, Izumi Takagi

研究成果: Article査読

6 被引用数 (Scopus)

抄録

Considered is a variational problem for the bending energy of closed surfaces under the prescribed area and surrounding volume. Minimizers of this problem are interpreted as surfaces modeling the shape of red blood cells. We give a rigorous proof of the existence of a one-parameter family of critical points bifurcating from the sphere and study their stability/instability. In particular, for a few branches of critical points, we compute the exact values of the index and the nullity of critical points.

本文言語English
ページ(範囲)63-111
ページ数49
ジャーナルCalculus of Variations and Partial Differential Equations
16
1
DOI
出版ステータスPublished - 2003 1 1

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Bifurcating critical points of bending energy under constraints related to the shape of red blood cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル