Bent Vectorial Functions, Codes and Designs

Cunsheng Ding, Akihiro Munemasa, Vladimir D. Tonchev

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Bent functions, or equivalently, Hadamard difference sets in the elementary Abelian group ( ${\mathrm {GF}}(2^{2m}), $ +), have been employed to construct symmetric and quasi-symmetric designs having the symmetric difference property. The main objective of this paper is to use bent vectorial functions for a construction of a two-parameter family of binary linear codes that do not satisfy the conditions of the Assmus-Mattson theorem, but nevertheless hold 2-designs. A new coding-theoretic characterization of bent vectorial functions is presented.

本文言語English
論文番号8736398
ページ(範囲)7533-7541
ページ数9
ジャーナルIEEE Transactions on Information Theory
65
11
DOI
出版ステータスPublished - 2019 11

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

フィンガープリント 「Bent Vectorial Functions, Codes and Designs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル