Automatic quality control of cardiac MRI segmentation in large-scale population imaging

Robert Robinson, Vanya V. Valindria, Wenjia Bai, Hideaki Suzuki, Paul M. Matthews, Chris Page, Daniel Rueckert, Ben Glocker

研究成果: Conference contribution

16 被引用数 (Scopus)

抄録

The trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools such as image segmentation methods are employed to derive quantitative measures or biomarkers for further analyses. Manual inspection and visual QC of each segmentation result is not feasible at large scale. However, it is important to be able to detect when an automatic method fails to avoid inclusion of wrong measurements into subsequent analyses which could otherwise lead to incorrect conclusions. To overcome this challenge, we explore an approach for predicting segmentation quality based on reverse classification accuracy, which enables us to discriminate between successful and failed cases. We validate this approach on a large cohort of cardiac MRI for which manual QC scores were available. Our results on 7,425 cases demonstrate the potential for fully automatic QC in the context of large-scale population imaging such as the UK Biobank Imaging Study.

本文言語English
ホスト出版物のタイトルMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
編集者Maxime Descoteaux, Simon Duchesne, Alfred Franz, Pierre Jannin, D. Louis Collins, Lena Maier-Hein
出版社Springer Verlag
ページ720-727
ページ数8
ISBN(印刷版)9783319661810
DOI
出版ステータスPublished - 2017
外部発表はい
イベント20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
継続期間: 2017 9 112017 9 13

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10433 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
国/地域Canada
CityQuebec City
Period17/9/1117/9/13

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Automatic quality control of cardiac MRI segmentation in large-scale population imaging」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル