Asymptotics of solutions to the fourth order Schrödinger type equation with a dissipative nonlinearity

Jun Ichi Segata, Akihiro Shimomura

研究成果: Article査読

6 被引用数 (Scopus)

抄録

In this paper, the asymptotic behavior in time of solutions to the one-dimensional fourth order nonlinear Schrödinger type equation with a cubic dissipative nonlinearity λ|u|2u, where λ is a complex constant satisfying Im λ < 0, is studied. This nonlinearity is a long-range interaction. The local Cauchy problem at infinite initial time (the final value problem) to this equation is solved for a given final state with no size restriction on it. This implies the existence of a unique solution for the equation approaching some modified free dynamics as t → +∞ in a suitable function space. Our modified free dynamics decays like (t log t)-1/2 as t → ∞.

本文言語English
ページ(範囲)439-456
ページ数18
ジャーナルKyoto Journal of Mathematics
46
2
DOI
出版ステータスPublished - 2006

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Asymptotics of solutions to the fourth order Schrödinger type equation with a dissipative nonlinearity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル