Asymptotics for fractional nonlinear heat equations

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin

研究成果: Article査読

13 被引用数 (Scopus)

抄録

The Cauchy problem is studied for the nonlinear equations with fractional power of the negative Laplacian {ut+(-δ)α\2 u + u1+σ = 0, u(0,x) = u0(x), x ∈ Rn, t> 0, u(0,x) = u0(x), x ∈ Rn , where α ∈ ( 0,2), with critical σ = α/n and sub-critical σ ∈ (0,α/n) powers of the nonlinearity. Let u0∈ L 1,a} ∩L∞∩ C, u0(x)≥ 0 in Rn}, θ =}∫Rnn u0( x) dx>0. The case of not small initial data is of interest. It is proved that the Cauchy problem has a unique global solution u ∈ C([0,∞); L∞∩ L1,a∩ C) and the large time asymptotics are obtained.

本文言語English
ページ(範囲)663-688
ページ数26
ジャーナルJournal of the London Mathematical Society
72
3
DOI
出版ステータスPublished - 2005 12
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Asymptotics for fractional nonlinear heat equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル