Asymptotic behavior of quantum walks on the line

Toshikazu Sunada, Tatsuya Tate

研究成果: Article査読

14 被引用数 (Scopus)

抄録

This paper gives various asymptotic formulae for the transition probability associated with discrete time quantum walks on the real line. The formulae depend heavily on the 'normalized' position of the walk. When the position is in the support of the weak-limit distribution obtained by Konno (2005) [5], one observes, in addition to the limit distribution itself, an oscillating phenomenon in the leading term of the asymptotic formula. When the position lies outside of the support, one can establish an asymptotic formula of large deviation type. The rate function, which expresses the exponential decay rate, is explicitly given. Around the boundary of the support of the limit distribution (called the 'wall'), the asymptotic formula is described in terms of the Airy function.

本文言語English
ページ(範囲)2608-2645
ページ数38
ジャーナルJournal of Functional Analysis
262
6
DOI
出版ステータスPublished - 2012 3 15
外部発表はい

ASJC Scopus subject areas

  • 分析

フィンガープリント

「Asymptotic behavior of quantum walks on the line」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル