Asymptotic behavior for a quadratic nonlinear schrödinger equation

Nakao Hayashi, Pavel I. Naumkin

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We study the initial-value problem for the quadratic nonlinear Schrödinger equation iut + 1/2uxx= δxū2, x ∈ ℝ, t > 1, u(1, x) = u1(x), x ∈ ℝ. For small initial data u1 ∈ H2,2 we prove that there exists a unique global solution u ∈ C([1, ∞); H2,2) of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region ΙxΙ ≤ C√t by the self-similar solution 1/√tMS(x/ √t) such that the total mass 1/√t ∫ MS(x/√t)dx = ∫ u1(x)dx, and in the far region ΙxΙ > √t the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrödinger equations.

本文言語English
ページ(範囲)1-38
ページ数38
ジャーナルElectronic Journal of Differential Equations
2008
出版ステータスPublished - 2008 2 1
外部発表はい

ASJC Scopus subject areas

  • Analysis

フィンガープリント 「Asymptotic behavior for a quadratic nonlinear schrödinger equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル