TY - JOUR
T1 - Asymmetric hydrogenation catalyzed by a rhodium complex of (R)-(tert-butylmethylphosphino)(di-tert-butylphosphino)-methane
T2 - Scope of enantioselectivity and mechanistic study
AU - Gridnev, Ilya D.
AU - Imamoto, Tsuneo
AU - Hoge, Garrett
AU - Kouchi, Mitsuhiro
AU - Takahashi, Hidetoshi
PY - 2008/2/27
Y1 - 2008/2/27
N2 - The rhodium complex of (R)-(tert-butylmethylphosphino)(di-tert- butylphosphino)methane used in Rh-catalyzed asymmetric hydrogenation of representative substrates 3-14 demonstrated high catalytic activity coupled with wide scope and nearly perfect enantioselectivity. Mechanistic studies (NMR and DFT computations) were carried out in order to investigate the mechanism of the enantioselection in the asymmetric hydrogenation of (Z)-α- acetamidocinnamate (3). Although catalyst-substrate complexes 15a,b with the double bond coordinated near the non-"chiral" phosphorus atom were formed as kinetic products upon the addition of 3 to solvate complex 2 at -100°C, they rapidly rearranged to more stable isomers 15c,d with the double bond coordinated near the "chiral" phosphorus atom. The thermodynamic and kinetic parameters of the interconversion between 15c and 15d were determined by NMR; mainly, the interconversion occurred intramolecularly via nonchelating catalyst-substrate complexes 16. The equilibrium between 15d and 16d was directly observed from NMR line shape changes at temperatures ranging from -100 to -40°C, whereas no such equilibrium was observed for 15c. This result was accounted for computationally by determining the corresponding transition states for the methanol insertion into 15c,d. Three sets of experiments of the low-temperature hydrogenation of different catalyst-substrate complexes gave the same order and sense of enantioselectivity (97% ee (R)) even in the case when 15c, having Re-coordinated double bond, was hydrogenated under the conditions precluding its isomerization to 15d. It was concluded that the hydrogenation of 15c,d does not occur directly, but is preceded by the dissociation of the double bond to result in the more reactive species 16. This indicates that enantioselection must occur at a later step of the catalytic cycle. DFT computations of association and migratory insertion steps suggest that enantioselection takes place during the association step when chelating dihydride 19d-MeOH is formed from nonchelating dihydride 18d.
AB - The rhodium complex of (R)-(tert-butylmethylphosphino)(di-tert- butylphosphino)methane used in Rh-catalyzed asymmetric hydrogenation of representative substrates 3-14 demonstrated high catalytic activity coupled with wide scope and nearly perfect enantioselectivity. Mechanistic studies (NMR and DFT computations) were carried out in order to investigate the mechanism of the enantioselection in the asymmetric hydrogenation of (Z)-α- acetamidocinnamate (3). Although catalyst-substrate complexes 15a,b with the double bond coordinated near the non-"chiral" phosphorus atom were formed as kinetic products upon the addition of 3 to solvate complex 2 at -100°C, they rapidly rearranged to more stable isomers 15c,d with the double bond coordinated near the "chiral" phosphorus atom. The thermodynamic and kinetic parameters of the interconversion between 15c and 15d were determined by NMR; mainly, the interconversion occurred intramolecularly via nonchelating catalyst-substrate complexes 16. The equilibrium between 15d and 16d was directly observed from NMR line shape changes at temperatures ranging from -100 to -40°C, whereas no such equilibrium was observed for 15c. This result was accounted for computationally by determining the corresponding transition states for the methanol insertion into 15c,d. Three sets of experiments of the low-temperature hydrogenation of different catalyst-substrate complexes gave the same order and sense of enantioselectivity (97% ee (R)) even in the case when 15c, having Re-coordinated double bond, was hydrogenated under the conditions precluding its isomerization to 15d. It was concluded that the hydrogenation of 15c,d does not occur directly, but is preceded by the dissociation of the double bond to result in the more reactive species 16. This indicates that enantioselection must occur at a later step of the catalytic cycle. DFT computations of association and migratory insertion steps suggest that enantioselection takes place during the association step when chelating dihydride 19d-MeOH is formed from nonchelating dihydride 18d.
UR - http://www.scopus.com/inward/record.url?scp=39749196691&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=39749196691&partnerID=8YFLogxK
U2 - 10.1021/ja076542z
DO - 10.1021/ja076542z
M3 - Article
C2 - 18237166
AN - SCOPUS:39749196691
VL - 130
SP - 2560
EP - 2572
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 8
ER -