Approximability of the independent feedback vertex set problem for bipartite graphs

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Given a graph G with n vertices, the independent feedback vertex set problem is to find a vertex subset F of G with the minimum number of vertices such that F is both an independent set and a feedback vertex set of G, if it exists. This problem is known to be NP-hard for bipartite planar graphs. In this paper, we study the approximability of the problem. We first show that, for any fixed ε > 0, unless P = NP, there exists no polynomial-time n1−ε-approximation algorithm even for bipartite planar graphs. This gives a contrast to the existence of a polynomial-time 2-approximation algorithm for the original feedback vertex set problem on general graphs. We then give an α(Δ − 1)/2-approximation algorithm for bipartite graphs G of maximum degree Δ, which runs in O(t(G)+Δn) time, under the assumption that there is an α-approximation algorithm for the original feedback vertex set problem on bipartite graphs which runs in O(t(G)) time.

本文言語English
ホスト出版物のタイトルWALCOM
ホスト出版物のサブタイトルAlgorithms and Computation - 14th International Conference, WALCOM 2020, Proceedings
編集者M. Sohel Rahman, Kunihiko Sadakane, Wing-Kin Sung
出版社Springer
ページ286-295
ページ数10
ISBN(印刷版)9783030398804
DOI
出版ステータスPublished - 2020
イベント14th International Conference and Workshops on Algorithms and Computation, WALCOM 2020 - Singapore, Singapore
継続期間: 2020 3 312020 4 2

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12049 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference14th International Conference and Workshops on Algorithms and Computation, WALCOM 2020
国/地域Singapore
CitySingapore
Period20/3/3120/4/2

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Approximability of the independent feedback vertex set problem for bipartite graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル