Analytic smoothing effect for system of nonlinear schrödinger equations with general mass resonance

Takayoshi Ogawa, Takuya Sato

研究成果: Article査読

抄録

We prove the analytic smoothing effect for solutions to the system of nonlinear Schrödinger equations under the gauge invariant nonlinearities. This result extends the known result due to Hoshino [Nonlinear Differential Equations Appl. 24 (2017), Art. 62]. Under rapidly decaying condition on the initial data, the solution shows a smoothing effect and is real analytic with respect to the space variable. Our theorem covers not only the case for the gauge invariant setting but also multiple component case with higher power nonlinearity up to the fifth order.

本文言語English
ページ(範囲)73-84
ページ数12
ジャーナルHiroshima Mathematical Journal
50
1
DOI
出版ステータスPublished - 2020 3

ASJC Scopus subject areas

  • 分析
  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「Analytic smoothing effect for system of nonlinear schrödinger equations with general mass resonance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル