Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel

Farideh HajyAkbary, Jilt Sietsma, Goro Miyamoto, Naoya Kamikawa, Roumen H. Petrov, Tadashi Furuhara, Maria J. Santofimia

研究成果: Article査読

31 被引用数 (Scopus)

抄録

A 0.3C-1.6Si-3.5Mn (wt%) steel was subjected to different Q&P treatments, leading to different combinations of initial martensite, bainite, secondary martensite, and retained austenite. In this study, initial martensite refers to the martensite formed during the initial quenching step and then subjected to an isothermal treatment at 400 °C; secondary martensite refers to martensite formed during quenching from 400 °C to room temperature. The yield strength of each constituent phase was determined by applying physical models to the data obtained from detailed microstructural characterization. The yield strength (uncertainty of 5%) of the Q&P microstructures was calculated by using a composite law to account for the contribution of each constituent phase. The dependence of the yield strength on the microstructural features of the Q&P microstructures was revealed by using the approach developed in this work. For example, initial martensite (which has a high yield strength and is the dominant phase in the microstructures) had the greatest effect on the yield strength of the Q&P microstructures. Furthermore, the phase fraction and dislocation density of this phase increased with decreasing quenching temperature, leading to an increase in the yield strength of the material.

本文言語English
ページ(範囲)505-514
ページ数10
ジャーナルMaterials Science and Engineering A
677
DOI
出版ステータスPublished - 2016 11 20

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル