Analysis of electric vehicle batteries recoverability through a dynamic fleet based approach

Fernando Enzo Kenta Sato, Toshihiko Nakata

研究成果: Chapter

1 被引用数 (Scopus)

抄録

The aim of this study is to propose a dynamic model for forecasting the changes in the number of batteries recovered from end of life electric vehicles considering different power trains. To achieve a sustainable society, the dependency of the energy on fossil fuels must be overcome. One of the first steps to manage this objective is through the reduction of its direct consumption by the wide-scale adoption of EV (HV/PHV/BEV/FCV). Low cost and stable production of lithium ion batteries (LiB) are expected to be a key element for the electrification of the transportation. For this reason, an efficient cascade use of electric vehicle batteries (EVB) to minimize its raw material supply risk, disposal risk, environmental impact and material cost/consumption in its production process become essential. Additionally, by the promotion of a closed loop life cycle, cost reduction in the end of life batteries treatments can be also expected. However, to grab this opportunity and create a sustainable market, balance between the demand and recoverability of LiB must be clarified to propose reliable second life projects. This study proposes a method based on system dynamics modeling for forecasting the vehicle fleet, sales and end of life vehicles by power train considering data of scrapping rates of vehicles by year of use. Moreover, the supply potential of scrapped batteries from a reverse logistic scheme is analyzed. Here, the Japanese vehicle market is considered as a case study and a timeframe of 2018 to 2050 forecasted. Results indicate that the amount of scrapped EVB will increase 45 times from 2020 to 2050. Moreover, a complete closed loop of them can be expected around 2050 only if the exportation of used electric vehicles is hardly diminished.

本文言語English
ホスト出版物のタイトルSustainable Production, Life Cycle Engineering and Management
出版社Springer Science and Business Media Deutschland GmbH
ページ309-323
ページ数15
DOI
出版ステータスPublished - 2021

出版物シリーズ

名前Sustainable Production, Life Cycle Engineering and Management
ISSN(印刷版)2194-0541
ISSN(電子版)2194-055X

ASJC Scopus subject areas

  • 環境工学
  • 環境化学
  • 再生可能エネルギー、持続可能性、環境
  • 産業および生産工学

フィンガープリント

「Analysis of electric vehicle batteries recoverability through a dynamic fleet based approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル