TY - JOUR
T1 - An insulin-sensitizing thiazolidinedione, which minimally activates PPARγ, does not cause bone loss
AU - Fukunaga, Tomohiro
AU - Zou, Wei
AU - Rohatgi, Nidhi
AU - Colca, Jerry R.
AU - Teitelbaum, Steven L.
N1 - Publisher Copyright:
© 2014 American Society for Bone and Mineral Research.
PY - 2015/3/1
Y1 - 2015/3/1
N2 - Rosiglitazone is an insulin-sensitizing thiazolidinedione (TZD) that activates the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). Although rosiglitazone effectively treats type II diabetes mellitus (T2DM), it carries substantial complications, including increased fracture risk. This predisposition to fracture is consistent with the fact that PPARγ preferentially promotes formation of adipocytes at the cost of osteoblasts. Rosiglitazone-activated PPARγ, however, also stimulates osteoclast formation. A new TZD analog with low affinity for binding and activation of PPARγ but whose insulin-sensitizing properties mirror those of rosiglitazone has been recently developed. Because of its therapeutic implications, we investigated the effects of this new TZD analog (MSDC-0602) on skeletal homeostasis, in vitro and in vivo. Confirming it activates the nuclear receptor in osteoclasts, rosiglitazone enhances expression of the PPARγ target gene, CD36. MSDC-0602, in contrast, minimally activates PPARγ and does not alter CD36 expression in the bone-resorptive cells. Consistent with this finding, rosiglitazone increases receptor activator of NF-kB ligand (RANKL)-induced osteoclast differentiation and number, whereas MSDC-0602 fails to do so. To determine if this new TZD analog is bone sparing, in vivo, we fed adult male C57BL/6 mice MSDC-0602 or rosiglitazone. Six months of a rosiglitazone diet results in a 35% decrease in bone mass with increased number of osteoclasts, whereas that of MSDC-0602-fed mice is indistinguishable from control. Thus, PPARγ sparing eliminates the skeletal side effects of TZDs while maintaining their insulin-sensitizing properties.
AB - Rosiglitazone is an insulin-sensitizing thiazolidinedione (TZD) that activates the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). Although rosiglitazone effectively treats type II diabetes mellitus (T2DM), it carries substantial complications, including increased fracture risk. This predisposition to fracture is consistent with the fact that PPARγ preferentially promotes formation of adipocytes at the cost of osteoblasts. Rosiglitazone-activated PPARγ, however, also stimulates osteoclast formation. A new TZD analog with low affinity for binding and activation of PPARγ but whose insulin-sensitizing properties mirror those of rosiglitazone has been recently developed. Because of its therapeutic implications, we investigated the effects of this new TZD analog (MSDC-0602) on skeletal homeostasis, in vitro and in vivo. Confirming it activates the nuclear receptor in osteoclasts, rosiglitazone enhances expression of the PPARγ target gene, CD36. MSDC-0602, in contrast, minimally activates PPARγ and does not alter CD36 expression in the bone-resorptive cells. Consistent with this finding, rosiglitazone increases receptor activator of NF-kB ligand (RANKL)-induced osteoclast differentiation and number, whereas MSDC-0602 fails to do so. To determine if this new TZD analog is bone sparing, in vivo, we fed adult male C57BL/6 mice MSDC-0602 or rosiglitazone. Six months of a rosiglitazone diet results in a 35% decrease in bone mass with increased number of osteoclasts, whereas that of MSDC-0602-fed mice is indistinguishable from control. Thus, PPARγ sparing eliminates the skeletal side effects of TZDs while maintaining their insulin-sensitizing properties.
KW - Bone histomorphometry
KW - Bone μCT
KW - Osteoclasts
KW - Thiazolidinedione
KW - Type II diabetes mellitus
UR - http://www.scopus.com/inward/record.url?scp=84922883000&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922883000&partnerID=8YFLogxK
U2 - 10.1002/jbmr.2364
DO - 10.1002/jbmr.2364
M3 - Article
C2 - 25257948
AN - SCOPUS:84922883000
SN - 0884-0431
VL - 30
SP - 508
EP - 515
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
IS - 3
ER -