An improved sufficient condition for reconfiguration of list edge-colorings in a tree

Takehiro Ito, Kazuto Kawamura, Xiao Zhou

研究成果: Article査読

13 被引用数 (Scopus)

抄録

We study the problem of reconfiguring one list edgecoloring of a graph into another list edge-coloring by changing only one edge color assignment at a time, while at all times maintaining a list edgecoloring, given a list of allowed colors for each edge. Ito, Kamínski and Demaine gave a sufficient condition so that any list edge-coloring of a tree can be transformed into any other. In this paper, we give a new sufficient condition which improves the known one. Our sufficient condition is best possible in some sense. The proof is constructive, and yields a polynomial-time algorithm that finds a transformation between two given list edge-colorings of a tree with n vertices via O(n2) recoloring steps. We remark that the upper bound O(n 2) on the number of recoloring steps is tight, because there is an infinite family of instances on paths that satisfy our sufficient condition and whose reconfiguration requires Ω(n2) recoloring steps.

本文言語English
ページ(範囲)737-745
ページ数9
ジャーナルIEICE Transactions on Information and Systems
E95-D
3
DOI
出版ステータスPublished - 2012 3

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「An improved sufficient condition for reconfiguration of list edge-colorings in a tree」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル