An Improved Fast Encoding Algorithm for Vector Quantization Using 2-Pixel-Merging Sum Pyramid and Manhattan-Distance-First Check

Zhibin Pan, Koji Kotani, Tadahiro Ohmi

研究成果: Article査読

抄録

Vector quantization (VQ) features a very heavy encoding process. In previous work [3], an efficient encoding algorithm using mean pyramid has been developed. To improve it further, a fast search algorithm is proposed in this letter. Specifically speaking, four major modifications are made. First, to rearrange the original codebook directly along the sorted real sums to reduce the search scope and then update the lower and upper bound dynamically. Second, to use sum instead of the mean that includes roundoff error to thoroughly avoid a possible mismatched winner. Third, to construct a sum pyramid using 2-pixel-merging other than 4-pixel-merging way to generate more in-between levels. Fourth, to introduce the Cauchy-Schwarz inequality to bridge Euclidean and Manhattan distance together so that the difference check between 2 vectors can be pre-conducted only by much lighter Manhattan distance computation. Experimental results show that the proposed algorithm is more search-efficient.

本文言語English
ページ(範囲)494-499
ページ数6
ジャーナルIEICE Transactions on Information and Systems
E87-D
2
出版ステータスPublished - 2004 2月

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「An Improved Fast Encoding Algorithm for Vector Quantization Using 2-Pixel-Merging Sum Pyramid and Manhattan-Distance-First Check」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル