An E8-approach to the moonshine vertex operator algebra

研究成果: Article査読

8 被引用数 (Scopus)

抄録

In this article, we study the moonshine vertex operator algebra starting with the tensor product of three copies of the vertex operator algebra V √2E8+, and describe it by the quadratic space over double-struck F sign2 associated to V√2E8 +. Using quadratic spaces and orthogonal groups, we show the transitivity of the automorphism group of the moonshine vertex operator algebra on the set of all full vertex operator subalgebras isomorphic to the tensor product of three copies of V√2E8+, and determine the stabilizer of such a vertex operator subalgebra. Our approach is a vertex operator algebra analogue of 'An E8-approach to the Leech lattice and the Conway group' by Lepowsky and Meurman. Moreover, we find new analogies among the moonshine vertex operator algebra, the Leech lattice and the extended binary Golay code.

本文言語English
ページ(範囲)493-516
ページ数24
ジャーナルJournal of the London Mathematical Society
83
2
DOI
出版ステータスPublished - 2011 4月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「An E8-approach to the moonshine vertex operator algebra」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル